

# FUNDAMENTALS OF OXIDATION REDUCTION POTENTIAL MEASUREMENT

Dr. V. K. Venugopal  
Former Professor & Head  
Department of Soil Science and Agricultural Chemistry  
College of Agriculture, Velayani  
Consultant, Digital University, Kerala

## What is ORP?

- ORP stands for oxidation-reduction potential, which is a measure, in millivolts, of the tendency of a chemical substance to oxidize or reduce another chemical substance

## Oxidation

- Oxidation is the loss of electrons by an atom, molecule, or ion.
- It may or may not be accompanied by the addition of oxygen, which is the origin of the term.
- Familiar examples are iron rusting and wood burning.
- When a substance has been oxidized, its oxidation state increases.
- Many substances can exist in a number of oxidation states.
- Example is iron, which can exhibit 2 oxidation states in soil ferrous and ferric  $Fe^{2+}$  and  $Fe^{3+}$

- Substances with multiple oxidation states can be sequentially oxidized from one oxidation state to the next higher.
- Adjacent oxidation states of a particular substance are referred to as redox couples.
- In the case below, the redox couple is  $\text{Fe}^{+2}/\text{Fe}$
- $\text{Fe} = \text{Fe}^{+2} + 2\text{electron}$
- Iron Ferrous ion electrons
- The chemical equation shown above is called the *half-reaction* for the oxidation, because, as will be seen, the electrons lost by the iron atom cannot exist in solution and have to be accepted by another substance in solution.
- So the complete reaction involving the oxidation of iron will have to include another substance, which will be reduced.
- The oxidation reaction shown for iron is, therefore, only half of the total reaction that takes place

## Reduction

- Reduction is the net gain of electrons by an atom, molecule, or ion.
- When a chemical substance is reduced, its oxidation state is lowered.
- As was the case with oxidation, substances that can exhibit multiple oxidation states can also be sequentially reduced from one oxidation state to the next lower oxidation state.
- The chemical equation shown below is the half-reaction for the reduction of chlorine



- The redox couple in the above case is  $\text{Cl}_2/\text{Cl}^-$  (chlorine/chloride)
- Oxidation reactions are always accompanied by reduction reactions.
- The electrons lost in oxidation must have another substance as a destination, and the electrons gained in reduction reactions have to come from a source.

- When two half-reactions are combined to give the overall reaction, the electrons lost in the oxidation reaction must equal the electrons gained in the reduction reaction.
- **Oxidation:**  $\text{Fe} = \text{Fe}^{+2} + 2 \text{e}^{-}$ 
  - (Half- Reaction)
- **Reduction:**  $\text{Cl}_2 + 2 \text{e}^{-} = 2 \text{Cl}^{-}$ 
  - (Half- Reaction)
- Overall reaction:  $\text{Fe} + \text{Cl}_2 \Rightarrow \text{FeCl}_2$
- In the reaction above, iron (Fe) reduces chlorine ( $\text{Cl}_2$ ) and is called a *reductant* or *reducing agent*.
- Conversely, chlorine ( $\text{Cl}_2$ ) oxidizes iron (Fe) and is called an *oxidant* or *oxidizing agent*

## STANDARD POTENTIAL

- How easily a substance is oxidized or reduced is given by the standard potential of its redox couple, symbolized by  $E^\circ$ .
- Standard potentials of quite a number of redox couples are available in reference books, along with their half-reactions.
- All are referenced to the redox couple for hydrogen ion/hydrogen ( $H^+/H_2$ ), which is assigned a standard potential of 0 millivolts.
- Examples
- Oxidants:  $E^\circ$  (mV)
  - $O_3 + 2H^+ + 2e^- = O_2 + H_2O + 2,007$
  - $HOCl + H^+ + 2e^- = Cl^- + H_2O + 1,490$
- Reductants:
  - $SO_4$
  - $-2 + H_2O + 2e^- = SO_3$
  - $-2 + 2 OH^- - 930$
  - $Na^+ + e^- = Na - 2,713$

## Measurement of ORP

- An ORP sensor consists of an ORP electrode and a reference electrode, in much the same fashion as a pH measurement.
- **The ORP Electrode**
- Principle behind the ORP measurement is the use of an inert metal electrode (platinum, sometimes gold),
- Due to its low resistance, it give up electrons to an oxidant or accept electrons from a reductant.
- The ORP electrode will continue to accept or give up electrons until it develops a potential, due to the build up charge, which is equal to the ORP of the solution.
- The typical accuracy of an ORP measurement is  $\pm 5$  mV.
- Sometimes the exchange of electrons between the ORP electrode and certain chemical substances is hampered by a low rate of electron exchange (exchange current density).
- In these cases, ORP may respond more strongly to a second redox couple in the solution (like dissolved oxygen).
- This leads to measurement errors, and it is recommended that new ORP applications be checked out in the laboratory
- ORP measurement is never temperature compensated

## Reference electrode

- The reference electrode used for ORP measurements is typically the same silver-silver chloride electrode used with pH measurements.
- In contrast with pH measurements, some offset in the reference is tolerable in ORP since, as will be seen, the mV changes measured in most ORP applications are large

## ORP measurement in soil

- ORP measurement in soil assesses the oxidizing or reducing capacity of the soil, indicating whether conditions are aerobic or anaerobic.
- It's measured in millivolts (mV), with positive values signifying oxidizing and negative values indicating reducing conditions.
- Aerobic soils generally have higher ORP values due to the presence of oxygen, while anaerobic soils have lower ORP values
- This information is crucial for understanding soil health, potential for corrosion, and microbial activity.
- ORP can be used to assess the overall health and quality of the soil, as it can indicate the presence of specific compounds or microbial activity.
- In construction and infrastructure projects, ORP measurements can help determine the likelihood of corrosion in soil, especially when dealing with metallic structures.
- ORP can provide insights into the types and activity of microorganisms in the soil, as different microbes thrive under different redox conditions

## Measurement Methods:

- ORP is typically measured using an electrode immersed in a soil suspension or in the field using specialized probes. The measured potential is then compared to established standards and interpreted accordingly.
- In situ field measurements using temporary or permanently installed electrodes have become routine study of soils

## Factors Influencing ORP:

- Several factors can influence ORP in soil, including soil moisture content, the presence of organic matter, and the type of microorganisms present.

## Limitations:

- ORP is a non-specific measurement, it reflects the combined effect of all redox-active species in the soil.
- Thorough understanding of the soil's composition and the specific redox reactions occurring is crucial for accurate interpretation of ORP data.

## Reference

**Rosemount Analytical Inc. 2008,ADS,43-014,Fundamentals of ORP Measurement**



Thank You