

Biological Diversity and Soil Fertility in organic farming

Dr. V. K. Venugopal

Former Professor & Head

Department of Soil Science and Agricultural
Chemistry College of Agriculture, Vellayani
Consultant, Digital University Kerala

The Architects- ecosystem engineers

- Macro fauna (earthworms, beetles, termites are the architects and builders of the soil eco system
 - Functions in soil
- Presence of all termites, ants, woodlice, millipedes, centipedes, beetles, caterpillars and scorpions have roles in organic matter decomposition
- Aid in soil structure development enabling other groups to thrive
- Build passages, tunnels and pore networks for transport of materials
- Occurs as diverse group controlling activities of lower organisms
- Form a crucial link in the food web.
- Some are plant pests and parasites, while others activate microflora.

- Helps to fragment organic material, creating more surface area
- Speeds up mineralization process and release of nutrients for plants and microbes
- Earthworm casts and tunnels, termite mounds, ant heaps increase porosity and enhance the nutritional and moisture supply
- Part-time soil residents like moles, snakes, lizards, mice and rabbits perform valuable functions in maintaining soil biodiversity.
- Burrowing activity for food and shelter permits air and water movement

Earth worm – Facts

- Earthworms are master builders of fertile soils
- They reproduce at a rather slow rate.
- Life expectancy is five to eight years and is the most long-lived soil animals
- Play a prominent role in soil. fertility
- Earthworms produce 40 to 100 tonnes of valuable worm casts per hectare per year .
- Worm casts contains on an average five times more nitrogen, seven times more phosphorus,
- and eleven times more potassium than the surrounding soil.
- Mixture of organic substances with mineral soil particles, microorganisms and mucous secretions of earthworms
- Aids in stable crumb structure development preventing the soil from silting up,
- Enhance nutrient and water retaining capabilities of soil
- Loosen up heavy soils and make sandy soils more cohesive
- Earthworm burrows ensure a good aeration of the soil.

**Earthworms, are the quiet master builders of soil fertility.
Intensive tillage considerably reduces their populations.**

Number of cocoons in the soil indicates favourable living conditions

- Stable channels of vertically burrowing earthworms improve the absorption and storage of water significantly
- Soils rich in earthworms absorb four to ten times the quantity of water than soils with fewer worms thus reducing surface runoff and erosion
- Worm burrows extend to over 900 m/sq m to one metre depth in un ploughed soils
- Earthworms break down up to 6 tonnes of dead organic material per hectare in a year
Transportation of soil material from the subsoil to the topsoil helps rejuvenation
- Promote colonization and reproduction of useful soil bacteria and fungi in the earthworm passages and faeces.
- Degrades pathogenic organisms from diseased plant residues and plant parts added to the soil
- Over 90 % of worm burrows are inhabited with plant roots permitting deep penetration and nutrient absorption

**Earth worm towers', clay–humus complexes and earthworm mucilage work rather visibly
‘towards soil cohesion**

Protecting and promoting Earthworms

Tillage and mechanization

- Tillage in any form destroys earthworm activity
- Avoid soil disturbance during peak earthworm activity,
- Tillage of the soil in a dry seasons is considerably less harmful to earthworms, as they will remain in the deeper soil layers. Plant residues should be worked in only superficially

Crop rotation

- A long crop rotation with perennial and deep rooting catch crops green manure, varied harvest residues, offer abundant nourishment for earthworms.
- A plant cover, especially during monsoon may promote earthworms considerably.
- Soil-regeneration provided by the use of perennial legumes are most ideal earthworms.

Fertilizer supplements

- A balanced and well cared for soil is beneficial to plants and earthworms.
- Slightly rotted manure or compost is usually more helpful than fresh manure to build soil organic matter, to reduce weeds, achieve long term nutrient supply.
- Organic fertilizer and manure should only be worked in superficially.
- Dilution and processing of liquid manure has a positive effect on earthworms.
- Regular liming is important, as most earthworms avoid soils with a pH below 5,5.

Earth worm Towers

- Are devices installed in cultivation plots to build up the population by providing ideal conditions for growth and multiplication

Materials needed

- Farm waste including kitchen waste
- PVC pipe
- PVC pipe cover or terracotta pot, preferably without holes
- Drill with larger sized drill bit
- Worms – Indigenous or Species used for vermicomposting

Fabrication of a Worm Tower

- First, cut the PVC to the length that you want. Remember worms are surface creatures and prefer surface soils
- On each pipe, drill holes along one end. The drilled end will be buried into the ground.
- Dig your ground deep enough to cover all of the predrilled holes on your pipe,(6-8 inches)
- Worms are surface creatures, so burying the PVC pipes deep is not optimal.
- Place PVC into the hole made in the ground and fix it straight with the surrounding soil.
- Add a layer of old leaves then food scraps and FYM
- Put alternate layer of dried leaves food waste and manure
- Top layer has to be dried leaves.
- Add the worms to the tube
- Place the cover on the top of pipe to protect from outside elements
- Worms multiply and move on to the soil

Bacteria and fungi – underrated helpers

- One gram of soil contains hundreds of millions of bacteria and hundreds of metres of fungal hyphae.
- Microorganisms capable of breaking down plant and animal material into its basic components.
- They not only regulate nutrient cycles by breaking down organic matter, but are also capable of fixing nitrogen from the air and forming symbiosis with plants.
- Bacteria and fungi are part of almost all mineralization processes in the soil.
- Mycorrhizae form a symbiotic relationship with plants, infest the plant root, and open up an extended soil area for the latter.
- Mycorrhizal fungi contribute further positive properties for the soil structure.
- They enable an exchange of substances between plants which are connected by them.
- Cultivation disrupts the fungal network in the soil but the mycelium regenerates

Mesofauna (collembola, mites)

- Important role in the carbon cycle
- Easily vulnerable to climate change.
- Feed on a wide range of materials including other soil animals, microorganisms,
- Live on decaying plant material, fungi, algae, lichen, spores, and pollen.
- Faecal matter in the pores add to the fertility of the soil

**A Spring tail (Collembola)
key agent in Organic matter
decomposition**

Perceiving Soil fertility in the Organic context

Observing the plants

- The cultivated plant is always the best indicator of the soil fertility
- A healthily plant growth over the years, with out any pest and diseses indicates a fertile soil

Interpreting the soil surface

- The soil surface already is an indicator of the state of the underlying soil.
- Surface vegetation cover, reveals crumb structure due to biological activity
- Also prevents surface sealing,crust formation and erosion
- Crusty and eroded soils are indicative of poor fertility

Observing the soil life

- The activity of earthworms and even smaller species, such as springtails, can be recognized by their exit holes on the soil surface.
- Earthworm faeces on the soil surface, too indicate a high activity
- Observed mainly during monsoon season
- Presence of decomposing organic matter indicates intense microbial activity

Smelling the soil

- Fertile soil smells nice, not repelling can compare the smell of forest soil or field margins.
- If the soil smells of rot, something is wrong.
- Roots also have an inherent odour which derives from root exudates
- Leguminous plants have a pleasant smell.
- Earthworms can often be found in the surrounding area
- Spade test - Manual method for assessing the soil, structure and presence of sub surface hard pan

Soil Probe (Penetrometer)

- The soil probe is an iron bar that sometimes comes with a pressure-measurement display
- Probe measures the penetration resistance of the soil, i.e. bulk density
- Depth of the hard layer also displayed.
- Analysis of chemical parameters
- Estimation of pH and plant nutrient elements has to be carried out
- Deficiencies of major and secondary nutrients to be supplied through organic supplements
- Corrections for acidity has to be done by liming
- Micro nutrient deficiency can be corrected through permissible inorganic supplements

Preserving and improving soil fertility

Soil Organic Matter benefits and management

- Important contributing factor for the improvement of soil problems and crucial for soil fertility
- Organic matter tends to deposit itself as layer on the surfaces of crumbs.
- Bigger lumps tend to break again so that smaller crumbs remain stable
- Organic matter covers the crumbs and protects from further breakdown during rains
- Soil experiences less capping/siltation.
- Organic matter lightens heavy soils, and makes it cultivable and also makes light soils more cohesive with clay-humus-complexes!
- In crumbly soils, there is more of infiltration, lesser erosion more root penetration into deeper layers and has a better water balance
- More organic matter means more nourishment for bacteria, fungi and other organisms in soil

- Green manures decays rapidly releasing nutrients which is nourish soil organisms.
- Lignified plant materials and dead micro organisms, on the other hand, take longer time to decay. and forms clay-humus complex,
- Heavy and humid region soils tend to have more organic matter as compared to light textured arid to semiarid soils
- Replenishment of Organic matter can be through addition of green manures and organic manures

The challenge of soil fatigue

- Continuous cultivation of a species or a group of species of legumes can cause soil fatigue
- Soil fatigue may be caused by an accumulation of pathogenic microbes, or by a one-sided impoverishment of the soils regarding essential nutrients, or toxins exuded by plants (allelopathy),
- Problems are specific to individual farms by a bad soil structure, or by a combination of factors.

Reference

Anne Turbé, Arianna De Toni, Patricia Benito, Patrick Lavelle, Perrine Lavelle, Nuria Ruiz, Wim H. Van der Putten, Eric Labouze, and Shailendra Mudgal. 2010. Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment

Thank You