

Soil Fertility in Organic Agriculture

Dr. V. K. Venugopal

Former Professor & Head

Department of Soil Science and Agricultural
Chemistry College of Agriculture, Vellayani
Consultant, Digital University Kerala

Concept of the nature of soil fertility

- Early days soil fertility was conceived merely based on nutrient levels of the surface soil
- Attempts were made to elucidate chemical structure of organic matter and soil fertility
- Focus now is on the availability of nutrients, the C/N ratio, mineralization, recycling /release of nutrients
- Hot water extracted nutrients of the soil is a measure of plant available nutrients
- The microbiological biomass

Concept of soil as an ecosystem

- Soil is comprised of organic matter, minerals, gases, liquids, and organisms that operate together as an ecosystem that supports life
- Soil ecosystem, functions as dynamic interaction of the abiotic and biotic components and is dependent on major key factors like moisture, light etc.
- A change in this balanced system, cause impairments in soil functions which are strictly dependent on soil structure and biodiversity

Soil Quality in relation to soil functions

- Soil quality is the sum total of all socially valued function of soil
- Functions associated with soils
- **Production function**:- Yields that suit local conditions.
- **Transformation function**: Nutrients are efficiently turned into yield.
- **Habitat function**: Living space for an active and diverse flora and fauna.
- **Degradation function**: Degradation/transformation of plant and animal residues,
- **Self-regulation function**: No danger of being permanently thrown off its healthy balance e.g. efficiently suppressing soil pathogens which affect crops
- **Filtering, buffering and storage function**: Retaining and breaking down harmful substances/pollutants to non toxic forms which do not affect crops.
- Sequestration of carbon

Soil fertility management in organic farming

- The enhancement of soil fertility was crucial even to the pioneers of organic farming
- Organic Agriculture depends mostly on the natural fertility of the soil
- Decline in fertility by various processes like erosion, or nutrient depletion by crops
- Replenishment of fertility is mostly through ecological means and organic supplements

Attributes of soil fertility

- Fertility is the combined effect of the soil physical, chemical and biological characteristics
- Assessment of soil fertility is very complex
- Cannot be assessed or quantified by a single measurement

Physical properties

- Can be identified by a spade test
- Physically sound soil offers living space and sufficient air for respiration all soil macro, micro fauna and plant roots.
- Soil with good physical condition should have favorable loam to clay loam texture permits stabilization of organic matter and aggregate stability
- Good aggregate stability promotes better water infiltration and air exchange
- Favourable available water storage capacity to meet water needs of the plants and soil fauna
- foraging of plant roots and good water infiltration
- Compaction in the surface and subsurface layers has negative impact on all the above properties
- Germination of seeds is impeded in soils with surface crust (Ref Cornel p. 28)
- Compaction measured in field using a penetrometer
- Expressed as Psi (Pounds per square inch)
- Plant roots cannot penetrate at penetration values greater than 300 psi

Organic matter content and soil properties

- OM has great impacts on the physical, chemical and biological properties of the soil
- Contributes to soil aggregation, water and nutrient holding capacity
- Provides nutrients and energy to the plant and soil microbial communities,
- Increasing the percent organic matter in the soil takes time and patience.
- It is unlikely that a single incorporation of a green manure or compost will noticeably increase the percent organic matter.
- However repeated use of organic amendments in combination with reduced tillage will build soil organic matter levels.
- Active carbon is particulate organic matter that is readily available and serves as an indicator of soil organic matter content
- Serves as a readily available carbon and energy source for the soil microbial community
- Addition of fresh and easily digestible organic matter Improves soil aggregate stability, nutrient cycling/mineralization, increased microbial activity and diversity

- Addition of more stable organic matter such as compost improve water infiltration and retention, nutrient adsorption thus preventing leaching
- Organic matter supplements through crop rotation, cover crops, green manures, and composts have a major impact on the population of microbes and diversity
- Controls soil borne pathogens, plant-parasitic nematodes and other pests.
- Plants differ in their efficiency to produce compounds that inhibit or suppress pests
Stimulates microbial communities that are antagonistic or parasitic to crop pests.
- Produce allelopathic compounds that inhibit or have positive influence on a plant

Chemical qualities

- Should have a favorable pH and sufficient levels of all nutrients (macro, secondary and micro) required for the plant
- Well balanced nutrient levels and organic compounds are a requisite for favorable for growth and nourishment of a complex of plant and soil organism.
- Complex metabolites of different organisms enhance the plant's immune response
- Excreted nutrients by organisms returned to soil contribute to the fertility

Biological qualities

- Life forms of the soil, mainly involved in transforming/recycling activity and release of nutrients
- Cohabitations are robust with a variety of forms which maintain a self-regulating ecological balance,
- All the animals, plants and microorganisms work symbiotically.
- Management of the biological factor involves providing conducive environment for their growth so as to maintain an appropriate balance

Root Health

- Healthy roots most essential for vigorous plant growth and high yield
- Quality and function of the roots indicated by size, color, texture and the absence of symptoms of damage by root pathogens including the fungi Fusarium, Pythium, Rhizoctonia, Thielaviopsis, and plant-parasitic nematodes
- Healthy roots also contribute to the active fraction of soil organic matter, promote rhizosphere microbial communities, contribute to increased aggregation, and reduced bulk density and soil compaction.

Reference

Department of Agriculture & Farmer's Welfare, 2019, Soil Health Management for Sustainable Crop Production in Kerala. (eds.) V.K.Venugopal, K.M.Nair, P.Rajasekharan, A.N.Sasidharan Nair, Kerala State Planning Board, Thiruvananthapuram, P 1-426

Thank You