

Application of Geo-informatics in Agriculture

Dr. V. K. Venugopal

Former Professor & Head

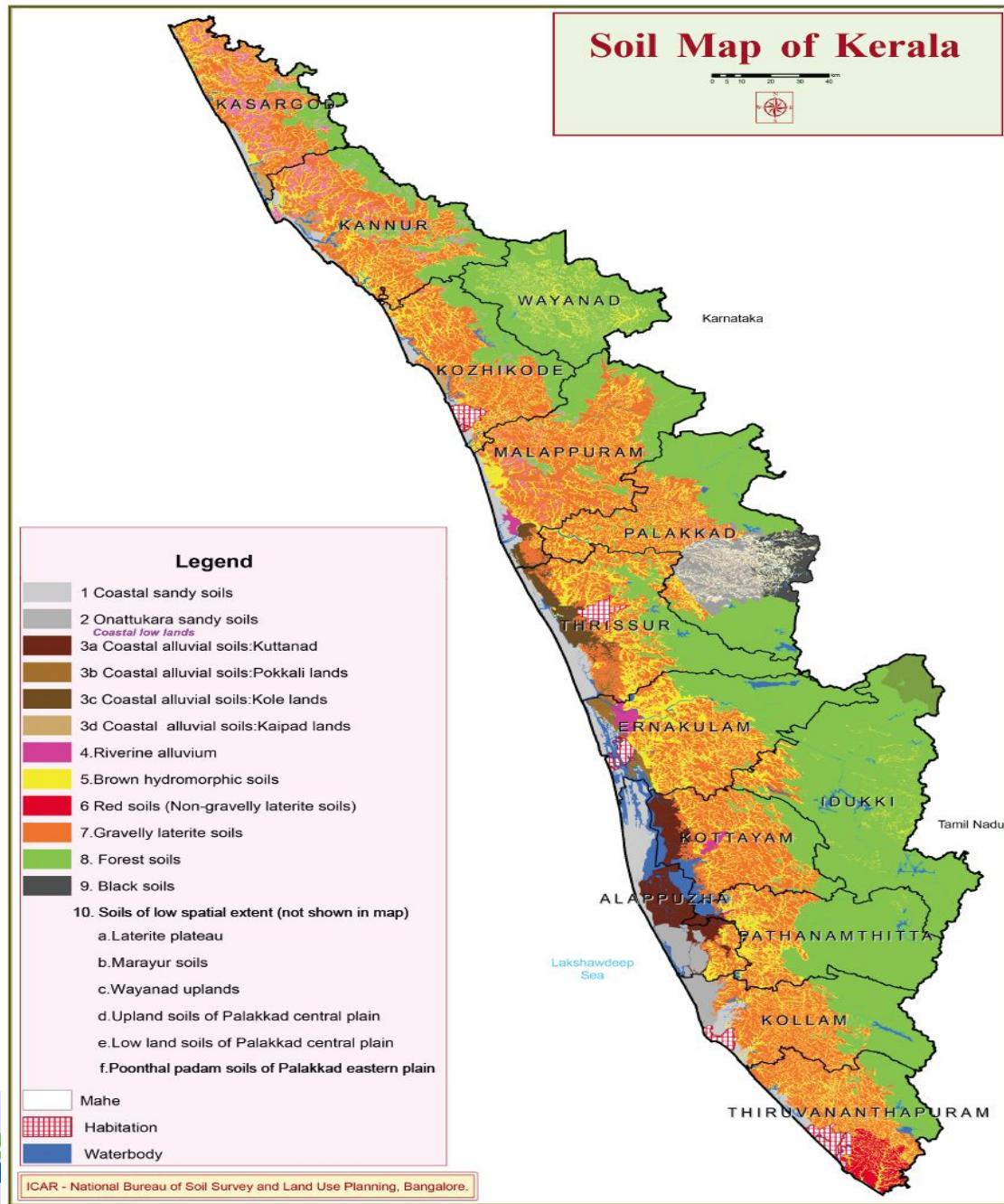
Department of Soil Science and Agricultural
Chemistry College of Agriculture, Vellayani
Consultant, Digital University, Kerala

Kerala Agriculture

Features

- Kerala with a geographic area of 38864 km² is only 1.3 percent of the total area of the country.
- land mass shows altitudinal variations from 5m below sea level in the west to soaring heights Of 2695 m above msl in the east.
- Wide diversity in climate and physiographic conditions
- Permits the cultivation of a wide variety of crops ranging from plantation crops and cash crops cool season vegetables and fruits.
- The average size of holding in Kerala is 0.27 ha as against the national average of 1.6 ha.

Topography


- Has three natural divisions of low land, mid land and high land forming parallel belts across the length of the state.
- Low land with stretches of sand and numerous back waters lies on western fringe of the state along the seashore ,ideally suited for coconut and rice
- Mid land region with hills and valleys presents an undulating tract of laterite soil cut across by numerous rivers.
- Noted for a large variety of agricultural products like rice, coconut, pepper, cashew, ginger, tapioca and rubber.
- High land consists mainly of mountains covered by dense forests bordering the Western Ghats. Important plantation Crops like cardamom, coffee, pepper and rubber are grown in this region.

Climate

- Humid tropical belt with two distinct monsoons , North East (June To September) and the South West (October to December) with average annual rainfall of 3000 mm
- The mean annual temperature ranging from 27.5°C to 29.5°C in the coastal areas and midlands and temperature of 15°C or lower in the high hills of Idukki and Wayanad.

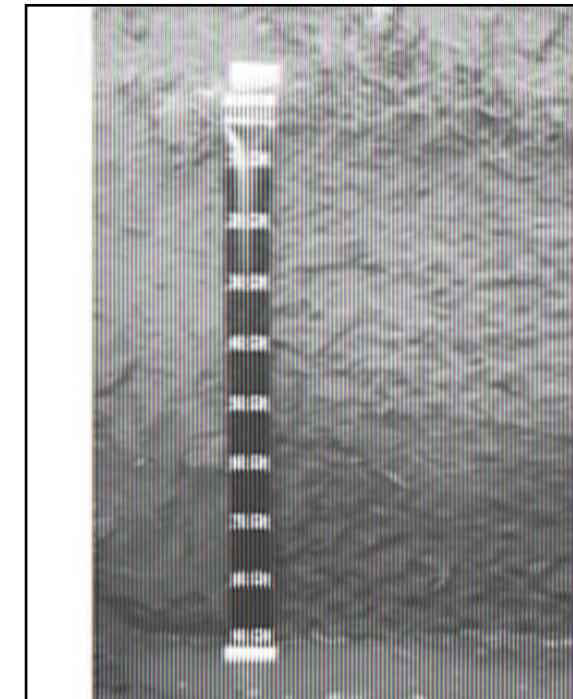
Geology

- Geologically, Kerala is occupied by four major rock formations
- Crystalline rocks of Precambrian age
- Sedimentary rocks of Tertiary,
- Laterite capping the crystalline and sedimentary rocks
- Recent and sub recent sediments forming the low lying areas and river valleys.

- The major soil groups of Kerala
- 1. Coastal sandy soils (Coastal plains)
- 2. Onattukara sandy soils (Onattukara plains)
- 3. Coastal Alluvium (Potential Acid Sulphate)
- 3a. Kuttanad soils
- 3b. Pokkali soils
- 3c. Kole soils
- 3d. Kaippad soils
- 4. Riverine alluvial soils (River banks)
- 5. Brown hydromorphic soils (Valleys of midlands, foothills and highlands)
- 6. Red non Gravelly laterite soils (Southern midlands and highland plateaus of (Western Ghats)
- 7. Gravelly laterite soils (South, Central and Northern midlands and foothills)
- 8. Forest soils (Western Ghats and Escarpments)
- 9. Black soils (Palakkad eastern plain)
- 10. **Special group (soils of limited spatial extent)**
 - a. Laterite plateau
 - b. Marayoor soils (Lowhills and rolling lands)
 - c. Wayanad upland soils
 - d. Upland soils of Palakkad central plains
 - e. Low land soils of Palakkad central plain
 - f. Poonthal padams (Lowlands of Palakkad eastern plains)

Features

- ❖ Occur as a narrow strip along the coast line from southern to northern end of the state
- ❖ Very deep, well drained, sands on very gently sloping subdued coastal sand dunes
- ❖ Color is yellowish brown to brown or gray, strongly acid
- ❖ Cation exchange capacity low, poor water and plant nutrient retention capacity
- ❖ Deficient in bases calcium, magnesium, potassium organic matter



Low land coastal sands-
Thiruvananthapuram 1

Onattukara Sandy Soils

Features

- ◆ Occur in the level sandy plain of extending inward, from the coast line into the midlands in Kollam and Alappuzha called as the Onattukara Region
- ◆ Grayish, sandy soils , very Deep, well drained, with shallow water table, located in low landscape regions
- ◆ Strongly acid, single grain Structure, Low cation exchange capacity deficient in basic cations, grey color due to organic matter, distinguishes these soils from the coastal sands

Kuttanad Region

- ❖ A vast stretch of land area below sea level, bounded on the west by a narrow strip of coastal sands, south by Onattukara sandy plain, east by laterite uplands and north by Pokkali lands
- ❖ Sea water ingress into these lands regulated by bunds and barrages
- Comprises of lakes, rivers which drain to the Vembanad lake
- ❖ Soils of the Kuttanad have been formed from mixed alluvial and marine sediments
- ❖ Poorly drained, high organic matter, strongly acid, clay texture
- Soils identified are :
Kayal, Karappadam, Kari

Kayal soils

- ❖ These soils have high levels of organic matter often reaching more than 20 per cent
- ❖ Sulphur bearing minerals within 50 cm from the surface.
- ❖ They are black in colour, poorly drained, heavy textured and extremely acid.
- ❖ Draining of the potential acid-sulphate soils results in ultra acid conditions and formation of acid sulphate soils.

Karappadam soils

- ❖ Occur along the inland water ways and rivers.
- ❖ Soils are deep, poorly drained with clay loam surface texture and silty clay subsoils.
- ❖ Very strongly acid to extremely acid in the subsoil layers due to the presence of decaying organic debris

Kari soil –Features

- ❖ These soils have high levels of organic matter often reaching more than 20 per cent
- ❖ Sulphur bearing minerals within 50 cm from the surface.
- ❖ They are black in colour, poorly drained, heavy textured and extremely acid.
- ❖ Draining of the potential acid-sulphate soils results in ultra acid conditions and formation of acid sulphate soils.

Karappadam soils

- ❖ Occur along the inland water ways and rivers.
- ❖ Soils are deep, poorly drained with clay loam surface texture and silty clay subsoils.
- ❖ Very strongly acid to extremely acid in the subsoil layers due to the presence of decaying organic

Soil profile

Pokkali Soils

Features

- ◆ **Distributed in coastal parts of northern Alappuzha, Ernakulam and south Thrissur**
- ◆ **Lands lie below sea level and do not have any protection from sea water ingress and hence mostly inundated with saline water**
- ◆ **Soils developed from mixed marine and river alluvium ,are deep, poorly drained, acid-saline clay**
- ◆ **Soils contain very high levels of organic matter, CEC and content of basic cations Soils have sulphur bearing minerals which on exposure to air cause extreme acidity**

Soil profile

Kole Soils

Soil profile

Features

- ◆ Kole lands of coastal Thrissur and Malappuram are lands below sea level, protected from sea water ingress by bunds and barrages
- ◆ Soils developed from mixed marine and river alluvium, deep, poorly drained, strongly acid clay, rich in organic matter, CEC and bases
- ◆ Soils contain sulphur bearing minerals at various depths and hence are potential acid sulphates

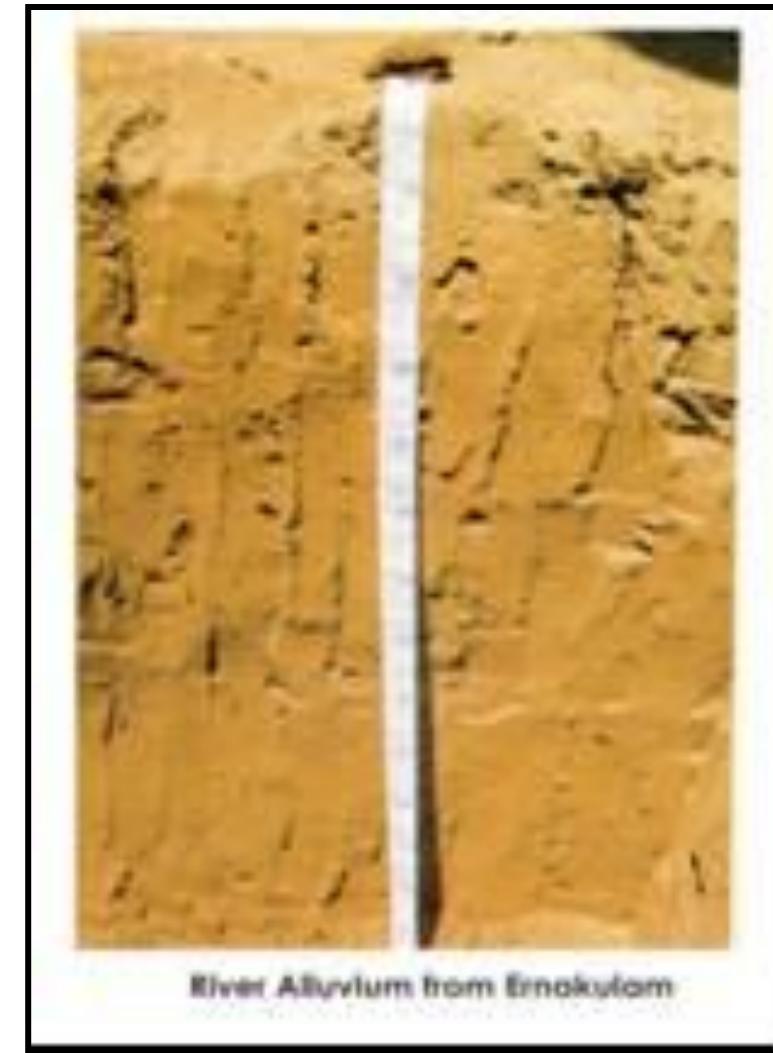
Kaipad soils

Features

- ◆ Hydromorphic soils occurring in coastal lowlands of north Kerala
- ◆ Developed from marine sediments with sulphur bearing minerals at various depths
- ◆ No protection from sea water ingress and hence acid saline
- ◆ Organic matter rich soils are very strongly acid, high CEC and fairly rich in bases
- ◆ A rice–fish sequence is often practiced

Soil profile

Wet land



Altered

Alluvium- Soils of River Banks

Features

- ◆ Distributed on the banks of rivers in gently sloping lands especially in their lower reaches
- ◆ Well drained, moderately slow permeability moderately good cultivable lands ,medium fertility
- ◆ Wide variation in their physico-chemical properties and arrangement of layers depends on the nature,deposirion of alluvium
- ◆ Very deep (> 150cm), acidic, non gravelly with textures varying from sandy loam to clay loam with dominance of silt fraction.

Brown Hydromorphic soils

Features

- ❖ Occur in the low lands of laterite terrain in midlands and foothills
- ❖ Distributed in almost all the agro-ecological units, with largest extent in midlands
- ❖ Formed on the alluvial and colluvial deposits and therefore inherit most properties of the upland laterite soils
- ❖ Periodic waterlogging of reveal redoximorphic features like mottles and gleyed horizons in the soil profiles
- ❖ Very deep soils, grayish brown or gray in colour, gravel free, strongly acid and clay texture
- ❖ Dissolution of iron in toxic levels seriously impair crop growth
- ❖ Water table at 1 to 1.5 m from surface

Soil profile

Red Soil

Features

- ◆ **Distributed in Neyyattinkara Taluk and South of Trivandrum**
- ◆ **Occur as association of laterite soils, devoid of gravel and plinthite the root limiting layer**
- ◆ **Slightly acid to neutral, poor in bases and nitrogen**
- ◆ **Low activity clay with low CEC and base saturation**

Soil Profile

Gravely laterite Soils of Northern Kerala

Features

- ◆ **Covers midland laterites of northern Kerala, from Malappuram to Kasaragod,**
- ◆ **Developed under longer dry period, higher gravel content and harder plinthite compared to the southern Laterites**
- ◆ **Laterite duricrusts are a common feature of the northern laterite terrain**
- ◆ **Loss of vegetation and accelerated erosion exposes the plinthite which irreversibly hardens to duricrusts (iron stone)**
- ◆ **Plinthite and high gravel content limits the volume of fine earth**
- ◆ **Low activity clay, acid soils have low base status and are deficient in plant nutrients**
- ◆ **Long dry period, low water holding capacity low effective soil volume are constraints for crop productivity**

Soil profile

Soils of Foot Hills

Features

- ◆ Soils on the foothills of Western Ghats are formed through the process of laterisation. Deep, well drained, organic matter rich contain very little gravel, initial stages of laterisation.
- ◆ Absence of dry spell due to forest or/plantation canopy impedes laterisation.
- ◆ Surface soils are rich in organic carbon, have moderate CEC and basic cations as compared to subsoils.

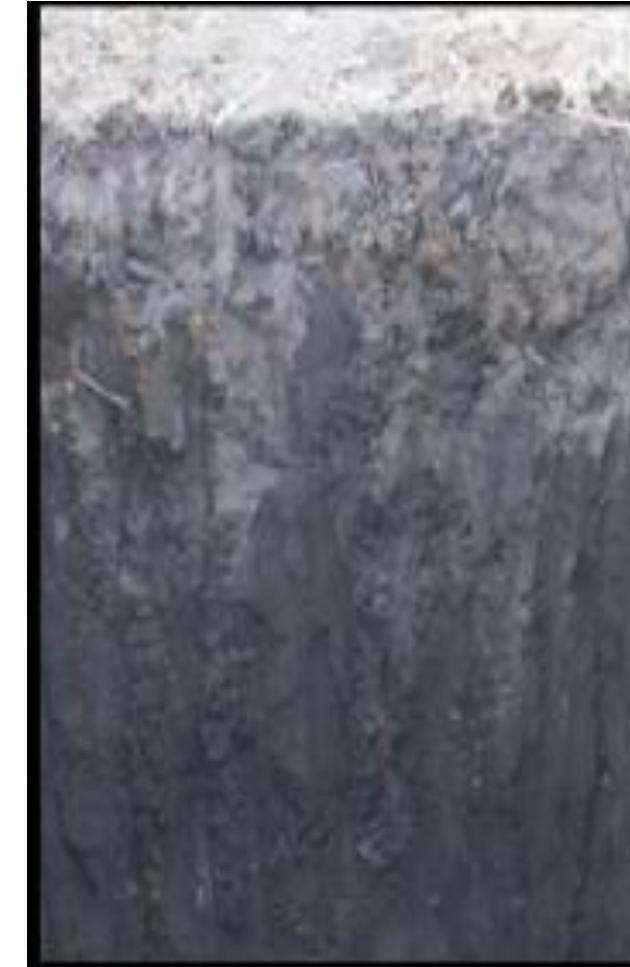
Soil Profile

Forest Soils

Features

- ◆ Steeply sloping forested lands of Western Ghats, deep, well drained, dark gray to reddish brown, clay, strongly acid soils, dominant soil forming process is laterization
- ◆ The modifying effect of the vegetation on the temperature, movement of water and other factors are not conducive to laterization

Soil Profile



Black Cotton Soil

Features

- ❖ Swell-shrink black soils, found in the Eastern parts of Chittur taluk (Palakkad district)
- ❖ Found in association with red loam soils, on nearly level lower landscape and red soils on undulating upper landscape
- ❖ Black cotton soils, are deep to very deep, dark grayish clay
- ❖ During dry period deep, wide cracks extending down to 50 cm or more is quite frequent
- ❖ Soils with alkaline reaction exhibit high CEC and are fully base saturated
- ❖ Calcium carbonate nodules or powdery lime is often observed in lower soil layers

Soil Profile

Remote Sensing and GIS – Areas identified

- Area, extent and distribution of various crops
- Management of water resources
- Identification of pest attacks and diseases
- Yield assessment studies
- Land suitability assessment for agriculture
- Disaster management
- Precision agriculture

Management of water resources

- ❖ Identification and mapping of surface water Infrared satellite images – Identification of surface water bodies
- ❖ Calculation of reservoir capacity,
- ❖ Identifying seasonal fluctuations of water levels
- ❖ Identification of tank water levels and irrigation command areas
- ❖ Irrigated lands assessment and inventory
- ❖ Calculation of water requirement of crops and subsequent water budgeting for command areas
- ❖ Assessment of water availability in rivers and reservoirs for optimal management to meet irrigation needs
- ❖ Determine volume of water stored and change in the level with time

Identification of problem and degraded areas

- Delineation of water logged /saline areas
- Identification of aquatic vegetation associated with water logging
- Eutrophication and pollution monitoring
- Soil erosion prone areas
- Watershed management

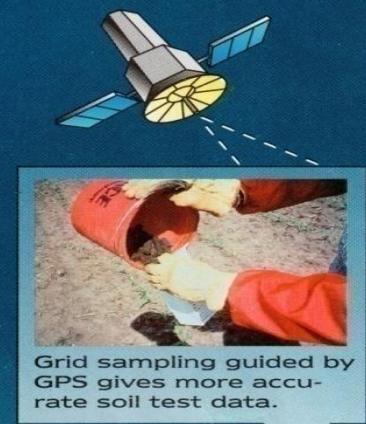
Identification of pest attacks and diseases

- Based on -
- Changes in pigmentation
- Chlorophyll content
- Leaf orientation and vegetative characteristics

Land suitability assessment for agriculture

- Land suitability for a given crop is based on Soil characteristics,
- Existing land use, Climatic factors such as rainfall and temperature
- Topography
- Availability of transportation facilities and agricultural labour
- Availability of water sources for irrigation

Disaster Forecasting and Management


Prone /Vulnerable areas and extent

- Floods
- Droughts
- Cyclones
- Forest fires
- Land slides


Precision agriculture or Precision farming

Is an information and technology-based agricultural management system to identify, analyze, and manage site-soil spatial and temporal variability within fields for optimum profitability, sustainability, and protection of the environment

HIGH-TECH TOOLS FOR SITE-SPECIFIC CROP NUTRIENT MANAGEMENT

Grid sampling guided by GPS gives more accurate soil test data.

Variable rate fertilizer application can improve efficiency.

Photo Credit: Dealer PROGRESS Magazine

Variable rate seeding, variety changes and starter can adjust for soil properties and productivity.

Crop scouting with new technology improves field records.

On-the-go yield monitors can quickly track variability in the field.

Photo Credit: Dealer PROGRESS Magazine

PAST YEARS' YIELDS

SOIL TEST (K)

SOIL TEST (P)

SOIL MAP

Definition

- Watershed may be defined as a Natural hydrologic entity that cover a specific expanse of land surface from which the rainfall and runoff flows to a defined drainage channel, stream or river at any particular point
-

Classification of watershed

Mean size

(+50% sq.km.)

1	Water resources region	5,00,000
2	River Basin	50,000
3	River sub basin	5,000
4	Watershed	500
5	Sub watershed	50
6	Mini watershed	5
7	Micro watershed	Below – 2.5
8	Nano watershed	a few hectares of land

- Source : MOA (1990) Watershed Atlas of India

A Laterite Quarry with cut Bricks

Thank You